On the cone minima and maxima of directed convex free disposal subsets and applications

نویسندگان

  • M. Ait Mansour
  • H. Riahi
  • Mohamed Ait Mansour
چکیده

In this paper, we first present new existence theorems of cone-supremum/infimum for directed convex and/or free disposal subsets in their closure. Then, we provide various conditions through which this kind of subsets admits a cone-maximum/minimum point, the so-called strongly maximal/minimal or ideal efficient points with respect to a cone. Next, we present a unifying result on the existence of these remarkable points, which we apply to extend, improve and unify the existence of an ideal efficient point for hypo/epi-graphical level sets of a given vector-valued function recently considered in [2–4]. A global set-valued analysis on the hypo/epi-profile mappings for general vector-valued maps is also presented. As a consequence, we extend the regularizations and radial epi-derivatives of [2,23] and, henceforth, obtain optimality conditions for global strong Pareto optimums of non-convex nondifferentiable extended vector-valued maps under different assumptions on the ordering cone and the topology of the target space, improving and generalizing the classic global optimality conditions of quasi-convex differentiable extended real-valued functions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimality conditions for Pareto efficiency and proper ideal point in set-valued nonsmooth vector optimization using contingent cone

In this paper, we first present a new important property for Bouligand tangent cone (contingent cone) of a star-shaped set. We then establish optimality conditions for Pareto minima and proper ideal efficiencies in nonsmooth vector optimization problems by means of Bouligand tangent cone of image set, where the objective is generalized cone convex set-valued map, in general real normed spaces.

متن کامل

Egoroff Theorem for Operator-Valued Measures in Locally Convex Cones

In this paper, we define the almost uniform convergence and the almost everywhere convergence for cone-valued functions with respect to an operator valued measure. We prove the Egoroff theorem for Pvalued functions and operator valued measure θ : R → L(P, Q), where R is a σ-ring of subsets of X≠ ∅, (P, V) is a quasi-full locally convex cone and (Q, W) is a locally ...

متن کامل

Gyrovector Spaces on the Open Convex Cone of Positive Definite Matrices

‎In this article we review an algebraic definition of the gyrogroup and a simplified version of the gyrovector space with two fundamental examples on the open ball of finite-dimensional Euclidean spaces‎, ‎which are the Einstein and M"{o}bius gyrovector spaces‎. ‎We introduce the structure of gyrovector space and the gyroline on the open convex cone of positive definite matrices and explore its...

متن کامل

Coincidence points and maximal elements of multifunctions on convex spaces

Generalized and unified versions of coincidence or maximal element theorems of Fan, Yannelis and Prabhakar, Ha, Sessa, Tarafdar, Rim and Kim, Mehta and Sessa, Kim and Tan are obtained. Our arguments are based on our recent works on a broad class of multifunctions containing composites of acyclic maps defined on convex subsets of Hausdorff topological vector spaces.

متن کامل

Spatialized Normal Cone Hierarchies

We develop a data structure, the spatialized normal cone hierarchy, and apply it to interactive solutions for model silhouette extraction, local minimum distance computations, and area light source shadow umbra and penumbra boundary determination. The latter applications extend the domain of surface normal encapsulation from problems described by a point and a model to problems involving two mo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015